domingo, 23 de mayo de 2010

Polimerizacion






Según la reacción de síntesis
También pueden clasificarse según la reacción que produjo el polímero:
Polímeros de adición
Implican siempre la ruptura o apertura de una unión del monómero para permitir la formación de una cadena. En la medida que las moléculas son más largas y pesadas, la cera parafínica se vuelve más dura y más tenaz. Ejemplo:
2n
H2C=CH2 → [-CH2-CH2-CH2-CH2-]n
Polímeros de condensación
Son aquellos donde los monómeros deben tener, por lo menos, dos grupos reactivos por monómero para darle continuidad a la cadena. Ejemplo:
R
-COOH + R'-OH → R-CO-OR' + H2O
Polímeros formados por etapas
La cadena de polímero va creciendo gradualmente mientras haya monómeros disponibles, añadiendo un monómero cada vez. Esta categoría incluye todos los polímeros de condensación de Carothers y además algunos otros que no liberan moléculas pequeñas pero sí se forman gradualmente, como por ejemplo los poliuretanos.
Según su estructura molecular
Amorfos
Son
amorfos los plásticos en los que las moléculas no presentan ningún tipo de orden; están dispuestas aleatoriamente sin corresponder a ningún orden. Al no tener orden entre cadenas se crean unos huecos por los que pasa la luz, por esta razón los polímeros amorfos son transparentes.
Semicristalinos
Los polímeros
semicristalinos Tienen zonas con cierto tipo de orden junto con zonas amorfas. En este caso al tener un orden existen menos huecos entre cadenas por lo que no pasa la luz a no ser que posean un espesor pequeño.
Cristalizables
Según la velocidad de enfriamiento, puede disminuirse (enfriamiento rápido) o incrementarse (enfriamiento lento) el porcentaje de cristalinidad de un polímero semicristalino, sin embargo, un polímero amorfo, no presentará cristalinidad aunque su velocidad de enfriamento sea extremadamente lenta.
Comodities
Son aquellos que tienen una fabricación, disponibilidad, y demanda mundial, tienen un rango de precios internacional y no requieren gran tecnología para su fabricación y procesamiento.
De ingeniería
Son los materiales que se utilizan de manera muy específica, creados prácticamente para cumplir una determinada función, requieren tecnología especializada para su fabricación o su procesamiento y de precio relativamente alto.
Elastómeros o Cauchos
Los
elastómeros se caracterizan por su gran elasticidad y capacidad de estiramiento y rebote, recuperando su forma original una vez que se retira la fuerza que los deformaba. Comprenden los cauchos naturales obtenidos a partir del látex natural y sintéticos; entre estos últimos se encuentran el neopreno y el polibutadieno.
Los elastómeros son materiales de moléculas grandes las cuales después de ser deformadas a temperatura ambiente, recobran en mayor medida su tamaño y geometría al ser liberada la fuerza que los deformó.

5.2 Macromoleculas sinteticas


Cada vez que surge el lanzamiento de algo novedoso que brinda bienestar y confort, tratamos de disfrutarlo al maximo y no nos ocupamos de los efectos nocivos que este pueda ocasionar a la naturaleza.Escuchar musica en un ipod que utiliza pilas o saborear un buen cafe en un vaso de unicel son ejemplos de productos que provocan satisfaccion pero causan daño ambiental: antes de haberse hecho, debio pensarse en el desecho. Las macromuleculas sinteticas se crean a partir de los enlaces carbono-carbono.

Funciones de las proteinas


Las funciones de las proteínas son de gran importancia aunque mucha gente piensa que sirven sólo para crear los músculos y poco más, sin embargo, las funciones de las proteínas son varias y bien diferenciadas. Las proteínas determinan la forma y la estructura de las células y dirigen casi todos los procesos vitales.
Las funciones de las proteínas son específicas de cada tipo de proteína y permiten que las células defenderse de agentes externos, mantener su integridad, controlar y regular funciones, reparar daños... Todos los tipos de proteínas realizan su función de la misma forma: Por unión selectiva a moléculas. Las proteínas estructurales se unen a otras moléculas de otras proteínas y funciones que realizan incluyen la creación una estructura mayor mientras que otras proteínas se unen a moléculas diferentes: hemoglobina a oxígeno, enzimas a sus sustratos, anticuerpos a los antígenos específicos, hormonas a sus receptores específicos, reguladores de la expresión génica al ADN...
Principales funciones de las proteínas
Las funciones de las proteínas son las siguientes:
Las proteínas tienen una función defensiva, ya que crean los anticuerpos y regulan factores contra agentes extraños o infecciones. Toxinas bacterianas, como venenos de serpientes o la del botulismo son proteínas generadas con funciones defensivas. Las mucinas protegen las mucosas y tienen efecto germicida. El fibrinógeno y la trombina contribuyen a la formación coágulos de sangre para evitar las hemorragias. Las inmunoglobulinas actúan como anticuerpos ante posibles antígenos.
Las proteinas tienen otras funciones reguladoras puesto que de ellas están formados los siguientes compuestos: Hemoglobina, proteínas plasmáticas, hormonas, jugos digestivos, enzimas y vitaminas que son causantes de las reacciones químicas que suceden en el organismo. Algunas proteinas como la ciclina sirven para regular la división celular y otras regulan la expresión de ciertos genes.
Las proteínas cuya función es enzimática son las más especializadas y numerosas. Actúan como biocatalizadores acelerando las reacciones químicas del metabolismo.
Las proteínas funcionan como amortiguadores, manteniendo en diversos medios tanto el pH interno como el equilibrio osmótico. Es la conocida como función homeostática de las proteinas.
La contracción de los músculos través de la miosina y actina es una función de las proteínas contráctiles que facilitan el movimiento de las células constituyendo las miofibrillas que son responsables de la contracción de los músculos. En la función contráctil de las proteínas también está implicada la dineina que está relacionada con el movimiento de cilios y flagelos.
La función de resistencia o función estructural de las proteínas también es de gran importancia ya que las proteínas forman tejidos de sostén y relleno que confieren elasticidad y resistencia a órganos y tejidos como el colágeno del tejido conjuntivo fibroso, reticulina y elastina elastina del tejido conjuntivo elástico. Con este tipo de proteínas se forma la estructura del organismo. Algunas proteínas forman estructuras celulares como las histonas, que forman parte de los cromosomas que regulan la expresión genética. Algunas glucoproteínas actuan como receptores formando parte de las membranas celulares o facilitan el transporte de sustancias.
Si fuera necesario, las proteinas cumplen también una función energética para el organismo pudiendo aportar hasta 4 kcal. de energía por gramo. Ejemplos de la función de reserva de las proteínas son la lactoalbúmina de la leche o a ovoalbúmina de la clara de huevo, la hordeina de la cebada y la gliadina del grano de trigo constituyendo estos últimos la reserva de aminoácidos para el desarrollo del embrión.
Las proteínas realizan funciones de transporte. Ejemplos de ello son la hemoglobina y la mioglobina, proteínas transportadoras del oxígeno en la sangre en los organismos vertebrados y en los músculos respectivamente. En los invertebrados, la función de proteínas como la hemoglobina que transporta el oxígeno la realizas la hemocianina. Otros ejemplos de proteínas cuya función es el transporte son citocromos que transportan electrones e lipoproteínas que transportan lípidos por la sangre.

Clasificacion de las proteinas






1.- Basada en la forma de las proteinas:



a)Proteinas globulares (esferoproteinas):

Estas proteinas no forman agregados. Las conformaciones principales del esqueleto peptidico incluyen la helice, las laminas y los giros. Estas proteinas tienen funcion metabolica: catalisis, transporte, regulacion, proteccion…Estas funciones requieren solubilidad en la sangre y en otros medios acuosos de celulas y tejidos. Todas las proteinas globulares estan constituidas con un interior y un exterior definidos. En soluciones acuosas, los aminoacidos hidrofobicos estan usualmente en el interior de la proteina globular, mientras que los hidrofilicos estan en el exterior, interactuando con el agua. Ejemplos de estas proteinas son la Hemoglobina, las enzimas, etc.






b) Proteinas fibrosas (escleroproteinas) :

Estas proteinas son insolubles en agua y forman estructuras alargadas.
Se agregan fuertemente formando fibras o laminas. La mayor parte desempenan un papel estructural y/o mecanico. Tienden a formar estructuras de alta regularidad, lo cual deriva a su vez de la alta regularidad de la estructura primaria. Usualmente son ricas en aminoacidos modificados. Ejemplos de estas proteinas son la queratina y el colageno.




2.- Basada en la composicion:

a) Proteinas Simples: Formadas solamente por aminoacidos que forman cadenas peptidicas.

b)Proteinas conjugadas: Formadas por aminoacidos y por un compuesto no peptidico. En estas proteinas, la porcion polipeptidica se denomina apoproteina y la parte no proteica se denomina grupo prostetico.

De acuerdo al tipo de grupo prostetico, las proteinas conjugados pueden clasificarse a su vez en:
- nucleoproteinas
- glycoproteinas
- flavoproteinas
- hemoproteinas,
- etc.



3.- De acuerdo a su valor nutricional, las proteinas pueden clasificarse en:

a) Completas: Proteinas que contienen todos los aminoacidos esenciales. Generalmente provienen de fuentes animales.

b) Incompletas: Proteinas que carecen de uno o mas de los amino acidos esenciales. Generalmente son de origen vegetal.

Un error comun es suponer que una proteina completa debe tener todos los amino acidos: la falta de un amino acido no esencial no es significativa desde el punto de vista nutricional, ya que podemos sintetizar los amino acidos no esenciales).

Es posible seguir una dieta vegetariana y obtener en la dieta todos los amino acidos esenciales?

Si, es posible. Para aquellos que siguen una dieta ovo-lacto-vegetariana, ello no es ningun problema, ya que las proteinas contenidas en el huevo y en la leche son proteinas completas.

Para los que siguen una dieta vegetariana estricta, sin alimentos de origen animal, la solucion consiste en utilizar las pocas proteinas completas de origen no animal que se conocen (como proteinas de la soya) o combinar proteinas de diferente origen vegetal en la dieta para compensar la falta de aminoacidos especificos en alguna de ellas.
Se conoce que si se combinan dos proteinas de bajo valor nutricional (proteinas que carecen de algun aminoacido esencial), podemos obtener una mezcla con un valor superior al de las dos proteinas originales. Esto se conoce como accion suplementaria de las proteinas.

En otras palabras, si la Proteina A carece de Lysina y la Proteina B carece de Metionina, la combinacion de Proteinas A+B tendra un valor nutricional superior al de las dos proteinas por separado. Hoy en dia se considera que no es necesario combinar a las dos proteinas incompletas en la misma comida para aprovechar el valor suplementario de la mezcla.

Estructura de las proteinas


Es la manera como se organiza una proteína para adquirir cierta forma. Presentan una disposición característica en condiciones fisiológicas, pero si se cambian estas condiciones como temperatura, pH, etc. pierde la conformación y su función, proceso denominado desnaturalización. La función depende de la conformación y ésta viene determinada por la secuencia de aminoácidos. Para el estudio de la estructura es frecuente considerar una división en cuatro niveles de organización, aunque el cuarto no siempre está presente.

Proteinas


Las proteínas están formadas por aminoácidos. Las proteínas de todo ser vivo están determinadas mayoritariamente por su genética (con excepción de algunos péptidos antimicrobianos de síntesis no ribosomal), es decir, la información genética determina en gran medida qué proteínas tiene una célula, un tejido y un organismo.
Las proteínas se sintetizan dependiendo de cómo se encuentren regulados los genes que las codifican. Por lo tanto, son susceptibles a señales o factores externos. El conjunto de las proteínas expresadas en una circunstancia determinada es denominado
proteoma.Las proteínas ocupan un lugar de máxima importancia entre las moléculas constituyentes de los seres vivos (biomoléculas). Prácticamente todos los procesos biológicos dependen de la presencia o la actividad de este tipo de moléculas. Bastan algunos ejemplos para dar idea de la variedad y trascendencia de las funciones que desempeñan

Clasificacion de los lipidos

Los lípidos son un grupo muy heterogéneo que usualmente se clasifican en dos grupos, atendiendo a que posean en su composición ácidos grasos (lípidos saponificables) o no lo posean (lípidos insaponificables).
Lípidos saponificables
Simples. Lípidos que sólo contienen carbono, hidrógeno y oxígeno.
Acilglicéridos. Cuando son sólidos se les llama grasas y cuando son líquidos a temperatura ambiente se llaman aceites.
Céridos (ceras)
Complejos. Son los lípidos que además de contener en su molécula carbono, hidrógeno y oxígeno, también contienen otros
elementos como nitrógeno, fósforo, azufre u otra biomolécula como un glúcido. A los lípidos complejos también se les llama lípidos de membrana pues son las principales moléculas que forman las membranas celulares.

Lipidos


Los lípidos son un conjunto de moléculas orgánicas, la mayoría biomoléculas, compuestas principalmente por carbono e hidrógeno y en menor medida oxígeno, aunque también pueden contener fósforo, azufre y nitrógeno, que tienen como característica principal el ser hidrofóbicas o insolubles en agua y sí en disolventes orgánicos como la bencina, el alcohol, el benceno y el cloroformo. En el uso coloquial, a los lípidos se les llama incorrectamente grasas, ya que las grasas son sólo un tipo de lípidos procedentes de animales. Los lípidos cumplen funciones diversas en los organismos vivientes, entre ellas la de reserva energética (triglicéridos), la estructural (fosfolípidos de las bicapas) y la reguladora (esteroides).

Clasificacion de los carbohidratos

Los monosacáridos o azúcares simples son los glucidos más sencillos, que no se hidrolizan, es decir, que no se descomponen para dar otros compuestos, conteniendo de tres a seis átomos de carbono. Su fórmula empírica es (CH2O)n donde n ≥ 3. Se nombran haciendo referencia al número de carbonos (3-6), terminado en el sufijo osa. La cadena carbonada de los monosacáridos no está ramificada y todos los átomos de carbono menos uno contienen un grupo alcohol (-OH). El átomo de carbono restante tiene unido un grupo carbonilo (C=O). Si este grupo carbonilo está en el extremo de la cadena se trata de un grupo aldehído (-CHO) y el monosacárido recibe el nombre de aldosa. Si el carbono carbonílico está en cualquier otra posición, se trata de una cetona (-CO-) y el monosacárido recibe el nombre de cetosa. 78. Todos los monosácaridos son azúcares reductores, ya que al menos tienen un -OH hemiacetálico libre, por lo que dan la Reacción de Maillard y la Reacción de Benedict .

Los disacáridos o azúcares dobles son un tipo de hidratos de carbono, o carbohidratos, formados por la condensación (unión) de dos monosacáridos iguales o distintos mediante enlace O-glucosídico (con pérdida de una molécula de agua), mono o dicarbonílico, que además puede ser α o β en función del -OH hemiacetal o hemicetal. Los disacáridos más comunes son:
Sacarosa: Formada por la unión de una glucosa y una fructosa. A la sacarosa se le llama también azúcar común. No tiene poder reductor.
Lactosa: Formada por la unión de una glucosa y una galactosa. Es el azúcar de la leche. Tiene poder reductor
Maltosa, Isomaltosa, Trehalosa, Celobiosa: Formadas todas por la unión de dos glucosas, son diferentes dependiendo de la unión entre las glucosas. Todas ellas tienen poder reductor, salvo la Trehalosa.
El carácter reductor se da en un disacárido si uno de los monosacáridos que lo forman tiene su carbono anomérico (o carbonílico) libre, es decir, si este carbono no forma parte del enlace O-glucosídico. Dicho de otra forma, si el enlace O-glucosídico es monocarbonílico el disacárido resultante será reductor (
Maltosa, Celobiosa, etc.), mientras que si el enlace O-glicosídico es dicarbónílico el disacárido resultante será no reductor (Sacarosa, Trehalosa).
En la mucosa del tubo digestivo del ser humano existen unas enzimas llamadas disacaridasas, que hidrolizan el enlace glucosídico que une a los dos monosacáridos, para su absorción intestinal.


Los polisacáridos son biomoléculas formadas por la unión de una gran cantidad de monosacáridos.Se encuadran entre los glúcidos, y cumplen funciones diversas, sobre todo de reservas energéticas y estructurales. Los polisacáridos son polímeros, cuyos monómeros constituyentes son monosacáridos, los cuales se unen repetitivamente mediante enlaces glucosídicos. Estos compuestos llegan a tener un peso molecular muy elevado, que depende del número de residuos o unidades de monosacáridos que participen en su estructura. Este número es casi siempre indeterminado, variable dentro de unos márgenes, a diferencia de lo que ocurre con biopolímeros informativos, como el ADN o los polipéptidos de las proteínas, que tienen en su cadena un número fijo de piezas, además de una secuencia específica.Los polisacáridos pueden descomponerse, por hidrólisis de los enlaces glucosídicos entre residuos, en polisacáridos más pequeños, así como en disacáridos o monosacáridos. Su digestión dentro de las células, o en las cavidades digestivas, consiste en una hidrólisis catalizada por enzimas digestivas (hidrolasas) llamadas genéricamente glucosidasas, que son específicas para determinados polisacáridos y, sobre todo, para determinados tipos de enlace glucosídico.

Carbohidratos


Los Carbohidratos, también llamados hidratos de carbono, glúcidos o azúcares son la fuente más abundante y económica de energía alimentaria de nuestra dieta.Están presentes tanto en los alimentos de origen animal como la leche y sus derivados como en los de origen vegetal; legumbres, cereales, harinas, verduras y frutas.
Dependiendo de su composición, los carbohidratos pueden clasificarse en:

Simples
Monosacáridos: glucosa o fructosa
Disacáridos: formados por la unión de dos monosacáridos iguales o distintos: lactosa, maltosa, sacarosa, etc.
Oligosacáridos: polímeros de hasta 20 unidades de monosacáridos.

Complejos
Polisacáridos: están formados por la unión de más de 20 monosacáridos simples.
Función de reserva: almidón, glucógeno y dextranos.
Función estructural: celulosa y xilanos.
A partir del dióxido de carbono y
agua, las plantas sintetizan los carbohidratos, en un proceso denominado fotosíntesis.

5.1 Importancia de las macromuleculas naturales



Las macromoleculas naturales son encontradas en lo seres vivos, son clasificadas en carbohidratos, proteínas y lipidos, compuestos cuyas moléculas poseen una elevada masa molecular, y en el caso de los carbohidratos y proteínas están constituidas por la repetición de algún tipo de subunidad estructural, pudiendo ser lineales o ramificadas.